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behaviors of the CC 31031 prototype and that obtained
according to [2).
IV. CONCLUSIONS

A broad-band equivalent circuit of a generic microwave
planar network has been derived in terms of lumped-
constant elements. These elements are only smoothly
frequency dependent, because of the dispersion properties
of microstrips, so that they may be considered, with good
approximation, to be constant with the frequency, even in
broad-band simulations.

Contrary to previously proposed equivalent circuits,
which are strongly frequency dependent, the present one
is easy to handle and can be a useful basis for designing
microstrip planar structures starting from conventional
synthesis procedures.

Experiments performed up to 12.5 GHz on structures
with different geometries have shown good agreement
with theoretical results.
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High-Accuracy Numerical Data on Propagation
Characteristics of a-Power Graded-Core Fibers
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Abstract— High-accuracy data of normalized cutoff frequencies, propa-
gation constants, and delay time of LP,,, modes for a-power graded-core
fibers (a=1, 2, 4, and 10) are obtained by using two entirely different
methods: power-series expansion and finite element methods, and the
results are compared. The difference between cutoff frequencies obtained
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by these methods is less than 0.005 percent for most of the LP modes. The
obtained data are accurate enough to be used as the standard for estimat-
ing the accuracy of other various analyses.

I. INTRODUCTION

ARIOUS methods have been presented for the analy-
sis of propagation characteristics of optical fibers
having arbitrary refractive-index profiles. Examples of
those are the WKB method, [1] power-series expansion
method, [2] Rayleigh-Ritz method [3], finite element
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method [4], and staircase-approximation method [5].

However, the accuracy of these analyses have not been
investigated systematically. One of the reasons is that the
high-accuracy, reliable “standard” data on the propaga-
tion characteristics for typical graded profiles, which are
necessary for estimating the accuracy, are not available.
(Accurate data for uniform-core fibers can be obtained
easily by an analytical approach [6).)

The major purpose of this paper is to present such
high-accuracy standard data within scalar-wave ap-
proximation. Normalized cutoff frequencies, propagation
constants, and delay times are shown for a-power profiles
where a=1, 2, 4, and 10. To assure accuracy, two entirely
different methods, power-series expansion and finite-
element methods, are used and the results are compared.

The second purpose is to show the formulation for the
delay-time calculation by the power-series expansion
method. Gambling er al. derived the dispersion equation
for a-power single-mode fibers for integral values of « [2].
Afterwards Love extended that dispersion equation to the
cases of higher modes and arbitrary rational values of «
[7]. However, the equation for the delay-time calculation
has not been presented. In this paper the delay-time
equation is derived from the variational expression of the
propagation constant,

II. a-POWER PROFILES

We consider a-power refractive-index profiles expressed
as

n(ry=n[1-2pA(r/a)*]"?,  0<r<a (la)

=n,=n[1-24]"7 (1b)

where a denotes the core radius, n; and n, are the refrac-
tive indices upon the axis and in the cladding, respec-
tively, A is the relative refractive-index difference between
the core axis and cladding (A=(n? —n3)/2n?), and pis a
parameter representing the refractive-index step or valley
at the core-cladding boundary. A smooth continuation at
the core-cladding boundary, the presence of a step, and
that of a valley are expressed by p=1, p<1, and p>1,
respectively.

a<r

III. PowEer-SERIES ExpaNsioN MeTHOD (PSEM)

In this method (PSEM), both the refractive-index pro-
file and the field-distribution function are expanded in
power series, and these are put into a wave equation to
determine the coefficients of the series for the field func-
tion.

A. Dispersion Equation

The scalar wave equation can be written as [8]

%%(x%)+(u2—pvzx“—{:l—j)R=O )
where

v’>=a’k?n}(2A): normalized frequency (3)

u?=a*(nik*-B?) 0]
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x=r/a

)
R(x) is the function representing the field distribution, m
is the rotational mode number, and k and B denote the
propagation constants in free space and in the fiber along
its axis, respectively.

We express the solution in the core as [2]

o
Rcore(x) =Axm 2 anxn’

n=0

x<1 6)

and that in the cladding as
Rcladding(x) = BKm( wx), (7)
where 4 and B are constants, K, is the mth order mod-
ified Bessel function of the second kind, and
w?=0v?—u?=a*(B*-k?n3). (8)
The coefficients a,, in (6) are determined by the follow-
ing recurrence formula [7]:

x>1

n(n—-—|-12m) wla, ,, 2<n<a+2 (92)
= —mi;—m(“zan—z—wzan-a-z)
a+2<n (9b)
ay= (10)
a;=0 (11)

From the continuity of R and dR/dx at x=1, we obtain
the dispersion equation as [7]

na
ne0 K,,_
=0 +2mt W) _ o (12)
2 a, K,.(w)
n=0
B. Cutoff Conditions
At cutoff frequencies for each mode
u=v (13)
w=0. (14)
Hence (12) becomes
2 nb,
n=0
~— +2m=0 (15)
2 b,
n=0
where
by=1 (16)
b,=0 17
-1 ,
b <
. n(n+2m)v —2s 2<n<a+2 (18a)
n_ _1 2
b .—
n(n+2m)v ( n—2 pbn—u—2)’
a+2<n. (18b)
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The normalized cutoff frequencies v, can be determined

by solving (15)—(18). The /th smallest solution of v gives
the o, for LP,,, mode.
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When the dispersion relation (k— f relation) is obtained wir ‘l‘ Vol h-- \
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T e o o : 107, 50 100
EE[ 2 nan/ 2 an+WKm-1(W)/Km(W)} number of expanded terms
n=0 n=0

(20)
However, computation of the delay time using this for-

mula takes a long computer time to assure accuracy. A
better expression is obtained from the variational expres-
sion of B [3] as

Fig. 1. Error of cutoff frequencies for uniform-core fibers computed by
the PSEM, as functions of the number of terms N. Solid curves,
broken curves, and dash-dotted curves show the errors for single,

double, and quadruple precision computations, respectively.

td(k2n2(x))
=&

dk
t= —
R? d
cﬁj; (x)xdx

Putting (6) and (7) into (21), we obtain the delay time as

107}
R*(x)xdx

@1)

bt
b
w

=0
w o0 0 2
> > a,.aj/i+j+2m+2+( > a,.) N
i=0j=0 i=0

o o 0 2
2 2 a,-aj/i+j+a+2m+2+( > a,.) N
i=0j

=

error |E|

i=0

(22)
where

107

m

— Ko i(W)Kp (W) -1.
K (w)

(23)

1 -
10 10

1w’
niumber of elements

IV. Fmuare ELEMENT METHOD (FEM)
In this method (hereafter FEM), the wave equation is
translated into a corresponding variational problem, which
is then solved by the FEM approach to obtain the proper

equation. The formulation was first described in [4] for
both the vectorial and scalar wave analyses, and later in

[9] in a much simpler form applicable only to scalar wave
analysis.

Fig. 2. Error of cutoff frequencies for uniform-core fibers computed by
the FEM, as functions of the number of elements M.

modes in a uniform-core fiber calculated by using each
method are compared with exact values. For a uniform
core fiber, the exact values are given analytically as /th

roots of Ji(x)=0, where Ji(x) denotes the first order
Bessel function of the first kind.

. . . Fig. 1 sh i
The process of the computation using the FEM is ig. 1 shows the error defined as

omitted in this paper because it is essentially identical to
one described in [9].

—0,
¢, computed ¢, exact
E=

0,_.’ exact
V. RESULTS OF NUMERICAL ANALYSES

29
obtained with the PSEM, as functions of the number of
the expansion terms N. Fig. 2 shows the error E of the

] ) . FEM as functions of the number of elements M in the
A. Normalized Cutoff Frequencies for Uniform-Core Fibers

First, to estimate the accuracy of the PSEM and FEM

finite-element analysis.
independently, the normalized cutoff frequencies of LP,,

These figures suggest that the PSEM is more accurate
than the FEM, provided that v is relatively small and/or
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TABLE I

NoRMALIZED CUTOFF FREQUENCIES OF LP,,; MODES FOR a-POWER PROFILES (p=1) COMPUTED BY USING THE PSEM (REPRODUCED
Dirzcrry FroM CoMPUTER OUTPUT. MODE NUMBERS m, [ ARE TYPED as M, L)

ALPHA = 1 ALPHA = &
M =20 M=z ] M =2 M=3 M=z M=0 M= 1 M= 2 M=3 LY
L=s1 04000000 44381552 74218053 94918659 124569812 L1l 0.000L00 24999553 4349936 6+580971 8.263079
L=2 5,948312 8,933073 114714540 144414960 17.073726 L=2 44555590 6450937y Ae664058 10.231664 11.951132
L=3 10.773218 134575572 164301533 18.,981256 21,632252 L=3 8,226613 10.202567 124458915 15,846829 154590939
L=4 154535689 18,247972 20+930571 23.567745 26.226232 L=4 11.855771 134795271 15.0502v8 174449592 19,210069
L =35 20.277313 22.934087 25.583111 28,219431 30.844625 L=5 15.470632 17,3868235 19.243901 214047174 22,818915
L=6 25.009182 27.627715 300250148 324868007 35,479889 L=é 19.078758 20.981466 22.431718 264642327 26,422112
L=7 29.735625 32.325942 34.926809 37.528495 40.128122 L=7 22.683119 24,574905 26.422839 28236268 30.021978
L=28 34,458707 37.027206 39.610216 42.197722 46,786075 L =8 264285139 284168503 3040164287 314829588 33.,619775
L=9 39.179548 41.730590 44.298550 46.873568 49,451613 L =9 29.885592 31.762224 33.606037 35.422593 37.216237
L =10 43.,898814 46,435519 484390603 514554558 544123189 L =10 33,484540 35.356041 37.198055 394015451 40.811810
Mz35 Mz M= 7 L] M=9 Mz5 M=o M=z 7 M= M=9
L=l 154197459 17.812375 284421423 23.025945 25.628033 L=1 94919787 11.561670 12.1v4344 144820944 1624436449
L=2 194709153 224330576 264.543276 27.550414 301539564 L=2 13.640769 15.310610 1040665745 18+612914 204251867
L=3 244264756 26.885341 25+497118 320103625 344706342 L=3 174365095 16.997758 20.274632 <24359436 22,994945
L= 28,851316 314466823 344075488 36.679279 39.279614 L= 6 204942068 224652626 244346569 264027414 274697611
L =S 33.460362 36,069329 384673037 41272834 43,869767 L =5 24.564160 26.288640 27996502 29,690900 314374249
L =6 38.086220 404687894 43.285842 45.880906 480473796 L =6 2841776493 29.912895 31.632152 334337945 35,032461
L=7 424724979 45,319145 47.910979 50.500916 53.089385 L=7 31.785053 33,529395 35,258060 364973481 384677623
Ls8 47.373659 494960595 524546222 554130863 57.714716 L =8 35.389006 37.140562 38.877075 404600686 42.313156
Ls9 52,030832 544610369 57.189855 594769165 624348452 L=9 38,99C421 40.747936 424491064 4644221694 454941406
L =10 56.654386 59.267010 61340825 644411383 67,0268140 L =10 42,550%42 44,352537 voelUl294 474837985 494564030
@ ()
ALPHA = 2 ALPRA =10
M=z0 M=l M2 =3 H= 4 Mz M= M2 M= 3 M= 4
L=1 04000000 3.518050 5.743923 Te847594 9,904203 L=1 0.000000 24649259 44242970 5.713952 7130066
L=s2 5067506 Te451446 9+645060 11.759842 13.833188 L=2 4.174340 6.026765 7675864 94228729 104724173
L=3 9.157606 11,423744 13.590328 15.702133 17.780248 L=3 74593270 9.378183 11042524 124632376 144171512
L =4 134197225 154408067 17.554802 19.660836 214739339 L=4% 10.958339 12.718355 1443901061 162001372 17.568038
L=5 174220229 194397792 214529546 232629565 254706695 L =5 144309667 164054404 17.730210 194355070 20.940528
L=6 21,235517 234390452 254510500 274604910 29,679959 L=6 17.653803 194388406 214066491 224700703 264299729
L =7 25.246531 27438490} 254495527 31,584878 33,657593 L =7 20.993947 22.721218 244400646 264041594 27.,650827
L =8 294254906 31.380530 33.483388 35,568216 $7.638559 L =8 244331598 264053267 27.733492 294379478 30.996638
L=29 33,261524 35,376982 37.473309 364554097 41,622126 L =9 27,667573 294384796 31.065481 324715347 34,338618
L =10 37.266908 394374036 414464782 43,541950 45.607769 L =10 31.062366 32.715950 34.390882 364069806 37.678405
Mz 5 M= 6 Mz 7 M=8 =9 M=z 5 Mz o Mz 7 M=z 8 =9
L =1 11.937778 13.958687 15,972134 17.980980 19.986899 L=1 8,51525¢ 9.880903 11.233353 124576461 13.912734
Lt =2 15,882132 17.915717 19.939211 214955873 23.987812 L =2 12.181310 13.611131 15,020595 160414397 17.7958560
L =3 19.836252 21.877116 23907310 25,929824 274946725 Lt =3 150673698 174147726 184599600 204033620 214452985
L= 23,798431 254843439 27.878016 29904747 31.925509 L=4 194100437 20.605606 224088605 23.553210 25.002323
L =5 274766848 294814148 31.851566 33,881301 35.,905008 L=5 224494501 244022693 250529368 27.017809 284490604
L =6 31,740089 33,788551 35,827781 37.859640 39.885574 L=é 25,869832 27.415705 28.940963 30.668461 31.940500
L=7 35,717198 37.766029 39,506371 41.839717 43.867326 L=7 29,233415 30.793270 324333486 33,856557 35.364526
Lt =8 39,697134 414746066 43.787038 45,B821404 47.850265 L=28 32.589152 34.160326 35.712832 37,248857 38.770223
L=9 43,679590 45,728244 474769510 49.804555 514834340 L=9 35,939330 37,519310 354062683 404629648 424162433
{ =10 47,664039 49,712229 51.753553 53,789020 550819470 L =10 39,205653 40.873995 424445467 444001788  45,544419
(b) @)

the numerical error is reduced by increasing N and the
significant digit in the computation. However, generally
the PSEM is more time consuming. As seen in Fig. 1, to
achieve satisfactory accuracy for higher modes (/>9), the
PSEM requires the “quadruple precision” computation
which means to deal with about 33 significant digits. In
the FEM, when M < 1000, double precision computation
(17 significant digits) is usually enough.

In the PSEM the computing time is proportional to N.
In the FEM it is approximately proportional to M. (When
we compute the determinant of an M X M matrix, the time
required is usually proportional to M2 However, in the
present case most of the off-diagonal elements are zero.)

B. Normalized Cutoff Frequencies for a-Power Profiles

The normalized cutoff frequencies of LP,, modes for
a-power profiles (a=1, 2, 4, and 10, p=1) computed by
PSEM are shown in Table I. It has been confirmed that
the relative difference between the v, values obtained by
the FEM and PSEM ((0,ppm — Uepsem)/ Vepsenm) 15 below
0.005 percent (5 10™°) except for only two cases (LF; 10
and LP; |, modes, both for a=1), and below 0.06 percent
over the entire table.

C. Dispersion and Delay-Time Characteristics

Figs. 3—8 show the dispersion and delay time character-
istics (curve-plotter output) of LP._, modes for six a~-power

profiles: (a, p)=(1.1), (2,1), (4,1), (10, 1), (2,1.5), and (2,2).
The upper and lower figures for each case show the
dispersion and delay-time characteristics, respectively. The
abscissa gives the normalized frequency v. The ordinates
of the upper and lower figures give a conventionally used
parameter representing f3

X=(k2n?—B2)/(K*n2—k*n} (25)

and the normalized delay time
(26)

where ¢ denotes the light velocity, ¢ the delay time per unit
distance (19), and &, is the group index of the material at
the center of the core (it is assumed to be equal to n, in
the present analysis).

The FEM (M=100) has been used to obtain these
graphs. However, computations have also been performed
by using the PSEM. It has been confirmed that the
relative error in the horizontal direction (i.e., (Oppy—
Upsem)/ Upsem fOT prescribed X or T') is less than 1072
over the entire graphs, and much lower than 10~2 at most
parts.

Incidentally, comparison of Figs. 3—6 suggests the well-
known superiority of the quadratic profile (a=2) in re-
ducing the intermodal delay difference; the best “bunch-
ing” of T—v curves is found in Fig. 4. Comparison of
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Figs. 4, 7, and 8 suggests that the delay difference can
further be reduced dramatically by making an index val-
ley at the core-cladding boundary (p=1.5 or p=2), as
proposed by Okamoto and Okoshi [10}", [12].

VI. CONCLUSION

High-accuracy data of normalized cutoff frequencies,
propagation constants and delay time of LP,, modes for
a-power graded-core fibers have been presented. Compu-
tations have been performed by two entirely different
methods, and the results are compared to assure accuracy.
The presented data will be useful for estimating the errors
of other methods of analysis.
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