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behaviors of the CC 31031 prototype and that obtained

according to [2].

IV. CONCLUSIONS

A broad-band equivalent circuit of a generic microwave

planar network has been derived in terms of lumped-

constant elements. These elements are only smoothly

frequency dependent, because of the dispersion properties

of microstrips, so that they may be considered, with good

approximation, to be constant with the frequency, even in

broad-band simulations.

Contrary to previously proposed equivalent circuits,

which are strongly frequency dependent, the present one

is easy to handle and can be a useful basis for designing

microstrip planar structures starting from conventional

synthesis procedures.

Experiments performed up to 12.5 GHz on structures

with different geometries have shown good agreement

with theoretical results.
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High-Accuracy Numerical Data on Propagation
Characteristics of a-Power Graded-Core Fibers

KIMIYUKI OYAMADA, STUDENT MEMBER, IEEE, N TAKANORI OKOSHI, MEMBER, IEEE

Abstnrct-High-accuracy data of normafimd cutoff frequenci+ propa-

gation constan~ and delay tfme of LP.I modes for a-power graded-core

fibers (a= 1, 2, 4, and 10) are obtained by using two entirely different

methods power-series expansion and finite element mettmk+ and the

reaufts are compared. The difference between cutoff frequencies obtained
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by these metbod!s fs leas than 0.00S percent for most of the LP modes. Tke

obtained data are accurate enough to be used as the standard for esthat-

ing the accumey of other various analyses.

1. INTRODUCTION

VARIOUS methods have been presented for the ana,ly-
sis of propagation characteristics of optical filt)ers

having arbitrary refractive-index profiles. Examples of

those are the WKB method, [1] power-series expansion

method, [2] Rayleigh– Ritz method [3], finite element

0018-9480/80/ 1000-1 113$00.7501980 IEEE
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method [4], and staircase-approximation method [5].

However, the accuracy of these analyses have not been

investigated systematically. One of the reasons is that the

high-accuracy, reliable “standard” data on the propaga-

tion characteristics for typical graded profiles, which are

necessary for estimating the accuracy, are not available.

(Accurate data for uniform-core fibers can be obtained

easily by an analytical approach [6].)

The major purpose of this paper is to present such

high-accuracy standard data within scalar-wave ap-

proximation. Normalized cutoff frequencies, propagation

constants, and delay times are shown for a-power profiles

where a = 1, 2, 4, and 10. To assure accuracy, two entirely

different methods, power-series expansion and finite-

element methods, are used and the results are compared.

The second purpose is to show the formulation for the

delay-time calculation by the power-series expansion

method. Gambling et al. derived the dispersion equation

for a-power single-mode fibers for integral values of a [2].

Afterwards Love extended that dispersion equation to the

cases of higher modes and arbitrary rational values of a

[7]. However, the equation for the delay-time calculation

has not been presented. In this paper the delay-time

equation is derived from the variational expression of the

propagation constant.

II. a-POWER PROFILES

We consider a-power refractive-index profiles expressed

as

n(r)= nl[l–2pA(r/a)a] l’2, O<r<a (la)

=rz2=n1[l-2A]’/2, a<r (lb)

where a denotes the core radius, n, and n2 are the refrac-

tive indices upon the axis and in the cladding, respec-

tively, A is the relative refractive-index difference between

the core axis and cladding (A=(n~ –n~)/2n~), and p is a

parameter representing the refractive-index step or valley

at the core-cladding boundary. A smooth continuation at

the core-cladding boundary, the presence of a step, and

that of a valley are expressed by p= 1, p< 1, and p> 1,

respectively.

III. POWER-SERIES EXPANSION METHOD (PSEM)

In this method (PSEM), both the refractive-index pro-

file and the field-distribution function are expanded in

power series, and these are put into a wave equation to
determine the coefficients of the series for the field func-

tion.

A. Dispersion Equation

The scalar wave equation can be written as [8]

lddR

( )[

m2

)‘— ‘z + ‘2– PV2X”–> ‘=0X dx
(2)

x = r/a (5)

R(x) is the function representing the field distribution, m

is the rotational mode number, and k and ~ denote the

propagation constants in free space and in the fiber along

its axis, respectively.

We express the solution in the core as [2]

Rmre(x)=Axrn ~ ax”, X<l (6)
~=1)

and that in the cladding as

R .,adding(x)=BKm( wx), x> 1 (7)

where A and B are constants, Km is the m th order mod-

ified Bessel function of the second kind, and

w2=v2–u2=a2(f12 -k2n~). (8)

The coefficients am in (6) are determined by the follow-

ing recurrence formula [7]:

/

–1 2— 2<n<~+2 (9a)
n(n+2m) u an–2’

a.=
—

n(n~~m) (u2an-2-pv2an-. _2),

( a+2<n (9b)

aO=l (lo)

al=O. (11)

From the continuity of R and dR/dx at x=1, we obtain

the dispersion equation as [7]
w

~ nan
~=1)

+2m+
wKm_,(w) =0

(12)

~ a.
Km(w) “

~=i)

B. Cutoff Conditions

At cutoff frequencies for each mode

U=v

W=o.

(13)

(14)

(15)

Hence (12) becomes

~gonbn

—+2m=0

~ b.
~=o

where

bo=l (16)

bl=O (17)

where

V2= a2k2n~(2A ): normalized frequency (3)

u2=a2(n~k2–~2) (4) .,

1
–1

v2b”_2, 2<n<~+2 (18a)

bn =
n(n+2m)

–1
v2(b.–z–pbn–. _J,

n(n+2m)

a+2 <n. (18b)
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The normalized cutoff frequencies Oc can be determined

by solving (1 5)–(1 8). The lth smallest solution of o gives
LP1l LP13 LP15 LP17 LP19

~o-2

the v= for LP~l mode.

‘LL

P’\ “, ‘p:’” ““3I \ \

C. Delay Time
I II
I II ’11
I Ilj

When the dispersion relation (k – /? relation) is obtained
~o-4

“1 I iII
in a form of j(k, /3) = O, the delay time per unit distance is

~, [--\

l\\
given as

G— 1
I II

I ‘l\\
: I

= _ 1 af/ak
L IO-6 I I

t (19)
k 1[1—— II \\’

c af/aJ?
I1 I

I I I
I I I \ \,

where c is the velocity of light. Using (12), we obtain
I I I ~ \---- ,

10-8 \ 1 II 1

[

\l,

~ + &“n/ i %+~~m.,(w)/Km(w)
1

I I I
I I II
I I \\, l
I 1

~=o I J: ~---i
t=–– , 1 .

[

~o-l

Caw

.

2 nan/n~Oan+W~m-l( W)/~m(w)
1

0 30 100

v .=fJ

nuirber of expandedterms

Fig. I. Error of cutoff frequencies for uniform-core fibers computed by

(20) the PSEM, as functions of the number of terms N. Solid curves,
broken curves, and dash-dotted curves show the errors for singk,

However, computation of the delay time using this for- double, and quadruple precision computations, respectively.

mula takes a long computer time to assure accuracy. A

better expression is obtained from the variational expres-

sion of /3 [3] as

k

1o-1

/

td(k2n2(x)) ~
R (X)XdX

‘= 0 @;R2(x)xdx “

(21)

LP1,10

Putting (6) and (7) into (21), we obtain the delay time as G ~o-3— LP15

where

Km.,(w) Icm+l(w) _ ~
‘n. =

K;(w) “

(22)

(23)

m.mberof elements

IV. FINITE ELEMENT METHOD (FEM)

In this method (hereafter FEM), the wave equation is

translated into, a co&esponding variational problem, which

is then solved by the FEM approach to obtain the proper

equation. The formulation was first described in [4] for

both the vectorial and scalar wave analyses, and later in

[9] in a much simpler form applicable only to scalar wave

analysis.

The process of the computation using the FEM is

omitted in this paper because it is essentially identical to

one described in [9].

v. fiSULTS OF NUMERICAL ANALYSES

A. Normalized Cutoff Frequencies for Uniform-Core Fibers

First, to estimate the accuracy of the PSEM and FEM

independently, the normalized cutoff frequencies of LPll

Fig. 2. Error of cutoff frequencies for uniform-core fibers computed try

the FEM, as functions of the rmmber of elements M.

modes in a uniform-core fiber calculated by using each

method are compared with exact values. For a unifonrn

core fiber, the exact values are given analytically as lth

roots of ~l(x) = O, where Jl( x ) denotes the first order

Bessel function of the first kind.

Fig. 1 shows the error defined as

E= ““ ‘rnp”td – “c’ ‘w”
t)

(24)
e, exact

obtained with the PSEM, as functions of the number of

the expansion terms N. Fig. 2 shows the error E of the

FEM as functions of the number of elements M in the

finite-element analysis.

These figures suggest that the PSEM is more accurate

than the FEM, provided that v is relatively small and/or
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TABLE I

NORMALIZED CUTOFF FIWQUENCIES OF LP., MODES FOR a-pOwER PROFILES (P = 1) COMPUTED BY USING THB PSEM (REPRODUCED

DIRECTLY FROM COMPUTER OuTPuT. MODE NUMBERS m, 1ARE TYPED AS M, L)

ALPNA = 1 ., u., : 6.
il. o M:l H.2 M:3 H,& 1I M,O .,1 . . . “.. .,* I

L=ll O.auoooa *.381552’ 7.219J53 9.918059 12.569812 I
0.933073 11.7146*o 14.41k960

13.575572 16.301533 18.981256
10.247972 20.936571 23.507745
22.934087 25.583111 28.219431
27.627?15 30,250148 32.866007
32.325942 34.926809 37.520495
37.027206 39.610216 42.197722
41.730590 44.298550 46.873568
66.635519 4e.;906a3 51.556558

L:l
~,z
L.3
~,4

L=5
L,6
L,7
L,S
L,9

L =10

L=2
L:3
L,&
L,5
L:6
L,7
L=S
L,9
L ❑10

5.948312
10.773218
15.535689
20.277313
25.009162
29.733625
34.458707
39.17954s
43.808014

17.073726
21,632252
26.226232
30..944423
35.479809
40.120122
44.786075
49.451613
54.123189

L=l
L.2
L=3
~.b

L=5
L,,5
L=7
L.13
~,9
L =10

M:3

15.197459
19.709153
24,264756
23,851316
33.469362
38.086220
42,72497q
+7.373859
32.030832
56.694386

M:6

17. a12575
22.33357b
26.885241
31.+66823
36.069329
40.6 S7B94
45.319145
49.960395
3Q.610369
59.267010

M=7

23.421423
24. V43278
29. W?lld
34.07540a
38.673o37
43.283842
47.910979
52.546222
57.189035
61.840825

“:8

23.625965
27.550614
32.103.525
36.679279
41.272834
45.8a0906
50.500916
55.130.363
39.769163
64.411303 1

‘4,9

25.628>33
30.153?54
34.7063’+2
39.2796L4
ti3.869767
48,473796
53.009385
57.714716
62,368452
67.028tk0

M=5 n,. N=7 !4=8 M=9

L,l
L,2

~.3
L:4
L=5
L=6
L=7
L,8
L.9
L =10

9.915787
13. bf.07b9
17.3’ 5095
20.942068
2k.56klt,.
28.1774,)3
31.785053
55.389006
38,99; +21
42.5$ o:4J

11.5!) 1630
15.31 o(J1O
12.937796
22.652626
26.288640
29.912895
33.529395
37.140562
40.747936
44.352537

l?.1v43&4
1,.9665,5

1+.82.944
ld.612914
<2.559436

16.,434”9
20.251867
75.994945
27.697611
31.374249
35.032461
38.677623
42.313136
45.941606
49.566030

.0. >74652
24.346563
2?.9965o2
31,632152
35.258060
38.877075
42.491064
.a.l(J 1294

26.02741.
29.690900
33.337945
36.973481
40.606686
44.221b94
4?.037985

(a)

ALPHA . 2

(c)

AL?t, A .13

M.o M=l ti.z H=3 “,4 /4.0 H=l fi. z f4,3 /+.4

0.000000 2,649259 4.242970 5.713952 7.130066L,l
(..2
L.3
L,4
~,5
L=6
L,7

L:l
L.2

L=3
L,4
L,5
I-,6

L.7
L=8
L=9
L =10

L,l

L=2
L=3
L=4
L=3
L=6
L=7
L=S
Lz9
L =10

4.174340 6.026765 7.6?5064 9.228729 10.724173
7.591270 9.37’9183 11.0+2524

10.958339 12.718335
12.632376 14.171512

14,3901bl 16.001372 17.568038
14.309b67 16.054404 17.730210 19,355070 20.940528
17.653803 19.388406 21.066491 22.700703 24.299?29
20.993947 ;2.721216 i.i.4006ii

L=8
L,9
L =10

24.33159b 26.053267 27.733492 22.379470 30.996630
27.667573 29.304796
31.0?,7’36A

31. ob54al 32.715347 34.338818
?>. 713950 34.39 .2!.2 36.669806 37.6784o3

M.5 M.6 ?!.7 ft. a “,9 M.5 n:. U:7 “.8 H.9

L.1

L,2

L,3
L,4
L.5
L=6
L=7
L:8
L.9

(m (d)

the numerical error is reduced by increasing N and the profiles: (a, p)= (1.1), (2, 1), (4, 1), (10, 1), (2, 1.5), and (2,2).

significant digit in the computation. However, generally

the PSEM is more time consuming. As seen in Fig. 1, to

achieve satisfactory accuracy for higher modes (1> 9), the

PSEM requires the “quadruple precision” computation

which means to deal with about 33 significant digits. In

the FEM, when M< 1000, double precision computation

(17 significant digits) is usually enough.

In the PSEM the computing time is proportional to N.

In the FEM it is approximately proportional to M. (When

we compute the determinant of an M x M matrix, the time

required is usually proportional to &.f2. However, in the
present case most of the off-diagonal elements are zero.)

The upper and lower figures “for each’ case show the

dispersion and delay-time characteristics, respectively. The

abscissa gives the normalized frequency o. The ordinates

of the upper and lower figures give a conventionally used

parameter representing ~

x=(k2n; –p2)/(k2n; –k2n;) (25)

and the normalized delay time

T=~–1
1

(26)

where c denotes the light velocity, tthe delay time per unit

distance (19), and N1 is the group index of the material at

the center of the core (it is assumed to be equal to nl in

the present analysis).

The FEM (ill= 100) has been used to obtain these

graphs. However, computations have also been performed

by using the PSEM. It has been confirmed that the

relative error in the horizontal direction (i.e., (OFEM —

UPSEM)/O PSEM for prescribed X or T) is less than 10– 2
over the entire graphs, and much lower than 10– 2 at most

parts.

Incidentally, comparison of Figs, 3–6 suggests the well-

known superiority of the quadratic profile (a= 2) in re-

ducing the intermodal delay difference; the best “bunch-

irw” of T– v curves is found in Fig. 4. Comparison of

B. Normalized Cutoff Frequencies for a-Power Profiles

The normalized cutoff frequencies of LP~, modes for

a-power profiles (a= 1, 2, 4, and 10, p = 1) computed by

PSEM are shown in Table I. It has been confirmed that

the relative difference between the or values obtained by

the FEM and PSEM (( oc~E~ – ocps~M )/oCps~M ) is below

0.005 percent (5x 10-5) except for only two cases (LP, ,.

and LPg, lo modes, both” for a-= 1), and below 0.06 perc&~

over the entire table.

C. Dispersion and De@-Time Characteristics

Figs. 3– 8 show the dispersion and delay time character-

istics (curve-~lotter outtmt) of LP_, modes for six a-~ower
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Fig. 3. Propagation characteristics for the case a = 1, p = 1, computed

.o.o, p. J--?-+&-*o%+-+-&-

by using the FEM. The numerals for each curve show the LP mode v

n&nbe~ m and 1, e.g., 34 denotes the LP34 mode.
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Fig. 4. Propagation characteristics for the casea = 2, p = 1, computed
by using the FEM.

Fig. 5. Propagation characteristics for the casea = 4, p= 1, computed
by using the FEM.
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Propagation characteristics for the case a= 10, p= 1, computed
by usinF,the FEM.
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Fig. 7. Propagation characteristics for the case a = 2, p = 1.5 (a
quadratic profile with valley) computed by using the FEM.

06 21 al

x ,1

0.5.

0-2 ,-2.0

0 5 10 M 20

i
..2 p-2. o &=o.01

o

ILr
-------—

T

01

-....,

-0.01
0 5

r-J’--

4

32 51

v ‘(

7
1>

J_
15

v

Fig. 8. Propagation characteristics for the case a = 2, p = 2 (a quadratic
profile with valley) computed by using the FEM.

Figs. 4, 7, and 8 suggests that the delay difference can

further be reduced dramatically by making an index val-

ley at the core-cladding boundary (p=l.5 or p=2), as

proposed by Okamoto and Okoshi [10] 1, [12].

VI. CONCLUSION

High-accuracy data of normalized cutoff frequencies,

propagation constants and delay time of LP~l modes for

a-power graded-core fibers have been presented. Compu-

tations have been performed by two entirely different

methods, and the results are compared to assure accuracy.

The presented data will be useful for estimating the errors

of other methods of analysis.
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newly derived in a correct manner but as an approximation in [11].


