

behaviors of the CC 31031 prototype and that obtained according to [2].

IV. CONCLUSIONS

A broad-band equivalent circuit of a generic microwave planar network has been derived in terms of lumped-constant elements. These elements are only smoothly frequency dependent, because of the dispersion properties of microstrips, so that they may be considered, with good approximation, to be constant with the frequency, even in broad-band simulations.

Contrary to previously proposed equivalent circuits, which are strongly frequency dependent, the present one is easy to handle and can be a useful basis for designing microstrip planar structures starting from conventional synthesis procedures.

Experiments performed up to 12.5 GHz on structures with different geometries have shown good agreement with theoretical results.

REFERENCES

- [1] H. A. Wheeler, "Transmission-line properties of parallel wide strips separated by a dielectric sheet," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-13, pp. 172-185, Mar. 1965.
- [2] G. D'Inzeo, F. Giannini, C. M. Sodi, and R. Sorrentino, "Method of analysis and filtering properties of microwave planar networks," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-26, pp. 462-471, July 1978.
- [3] I. Wolff, G. Kompa, and R. Mehran, "Calculation method for microstrip discontinuities and T-junctions," *Electron. Lett.*, vol. 8, pp. 177-179, Apr. 1972.
- [4] G. Kompa and R. Mehran, "Planar waveguide model for calculating microstrip components," *Electron. Lett.*, vol. 11, pp. 459-460, Sept. 1975.
- [5] I. Wolff and N. Knoppik, "Rectangular and circular microstrip disk capacitors and resonators," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-22, pp. 857-864, Oct. 1974.
- [6] P. Benedek and P. Silvester, "Equivalent capacitances for microstrip gaps and steps," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-20, pp. 729-733, Nov. 1972.
- [7] A. F. Thomson and A. Gopinath, "Calculation of microstrip discontinuity inductances," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-23, pp. 648-655, Aug. 1975.
- [8] C. Gupta and A. Gopinath, "Equivalent circuit capacitance of microstrip step change in width," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-25, pp. 819-822, Oct. 1977.
- [9] B. Easter, A. Gopinath, and I. M. Stephenson, "Theoretical and experimental methods for evaluating discontinuities in microstrips," *Radio Electron. Eng.*, vol. 48, pp. 73-84, Jan./Feb. 1978.
- [10] A. Gopinath and G. Gupta, "Capacitance parameters of discontinuities in microstrip-lines" *IEEE Trans. Microwave Theory Tech.*, vol. MTT-26, pp. 831-836, Oct. 1978.
- [11] B. Bianco, M. Granara, and S. Ridella, "Filtering properties of two-dimensional lines' discontinuities," *Alta Freq.*, vol. XLII, pp. 286-294, June 1973.
- [12] W. Menzel and I. Wolff, "A method for calculating the frequency-dependent properties of microstrip discontinuities," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-25, pp. 107-112, Feb. 1977.
- [13] G. Kompa, "Design of stepped microstrip components," *Radio Electron. Eng.*, vol. 48, pp. 53-63, Jan./Feb. 1978.
- [14] G. D'Inzeo, F. Giannini, and R. Sorrentino, "Theoretical and experimental analysis of non-uniform microstrip lines in the frequency range 2-18 GHz," in *Proc. 6th European Microwave Conf.*, (Rome, Italy), 1976, pp. 627-631.
- [15] G. D'Inzeo, F. Giannini, P. Maltese, and R. Sorrentino, "On the double nature of transmission zeros in microstrip structures," *Proc. IEEE*, vol. 66, pp. 800-802, July 1978.
- [16] T. Okoshi and T. Mihoshi, "The planar circuit—An approach to microwave integrated circuitry," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-20, pp. 245-252, Apr. 1972.
- [17] G. D'Inzeo, F. Giannini, R. Sorrentino, and J. Vrba, "Microwave planar networks: the annular structure," *Electron. Lett.*, vol. 14, pp. 526-528, Aug. 1978.
- [18] G. D'Inzeo, F. Giannini, and R. Sorrentino, "Novel integrated lowpass filters," *Electron. Lett.*, vol. 15, pp. 258-260, Apr. 1979.
- [19] P. P. Civalleri and S. Ridella, "Impedance and admittance matrices of distributed three-layer N-ports," *IEEE Trans. Circuit Theory*, vol. CT-17, pp. 392-398, Aug. 1970.

High-Accuracy Numerical Data on Propagation Characteristics of α -Power Graded-Core Fibers

KIMIYUKI OYAMADA, STUDENT MEMBER, IEEE, AND TAKANORI OKOSHI, MEMBER, IEEE

Abstract—High-accuracy data of normalized cutoff frequencies, propagation constants, and delay time of LP_{ml} modes for α -power graded-core fibers ($\alpha=1, 2, 4$, and 10) are obtained by using two entirely different methods: power-series expansion and finite element methods, and the results are compared. The difference between cutoff frequencies obtained

Manuscript received March 25, 1980; revised June 12, 1980. This work was partially supported by the Japanese Government under Scientific Research Grant-in-Aid "Optical Guided-Wave Electronics."

The authors are with the Department of Electronic Engineering, University of Tokyo, Bunkyo-Ku, Tokyo, 113 Japan.

by these methods is less than 0.005 percent for most of the LP modes. The obtained data are accurate enough to be used as the standard for estimating the accuracy of other various analyses.

I. INTRODUCTION

VARIOUS methods have been presented for the analysis of propagation characteristics of optical fibers having arbitrary refractive-index profiles. Examples of those are the WKB method, [1] power-series expansion method, [2] Rayleigh-Ritz method [3], finite element

method [4], and staircase-approximation method [5].

However, the accuracy of these analyses have not been investigated systematically. One of the reasons is that the high-accuracy, reliable "standard" data on the propagation characteristics for typical graded profiles, which are necessary for estimating the accuracy, are not available. (Accurate data for uniform-core fibers can be obtained easily by an analytical approach [6].)

The major purpose of this paper is to present such high-accuracy standard data within scalar-wave approximation. Normalized cutoff frequencies, propagation constants, and delay times are shown for α -power profiles where $\alpha = 1, 2, 4$, and 10. To assure accuracy, two entirely different methods, power-series expansion and finite-element methods, are used and the results are compared.

The second purpose is to show the formulation for the delay-time calculation by the power-series expansion method. Gambling *et al.* derived the dispersion equation for α -power single-mode fibers for integral values of α [2]. Afterwards Love extended that dispersion equation to the cases of higher modes and arbitrary rational values of α [7]. However, the equation for the delay-time calculation has not been presented. In this paper the delay-time equation is derived from the variational expression of the propagation constant.

II. α -POWER PROFILES

We consider α -power refractive-index profiles expressed as

$$n(r) = n_1 [1 - 2\rho\Delta(r/a)^\alpha]^{1/2}, \quad 0 \leq r \leq a \quad (1a)$$

$$= n_2 [1 - 2\Delta]^{1/2}, \quad a < r \quad (1b)$$

where a denotes the core radius, n_1 and n_2 are the refractive indices upon the axis and in the cladding, respectively, Δ is the relative refractive-index difference between the core axis and cladding ($\Delta = (n_1^2 - n_2^2)/2n_1^2$), and ρ is a parameter representing the refractive-index step or valley at the core-cladding boundary. A smooth continuation at the core-cladding boundary, the presence of a step, and that of a valley are expressed by $\rho = 1$, $\rho < 1$, and $\rho > 1$, respectively.

III. POWER-SERIES EXPANSION METHOD (PSEM)

In this method (PSEM), both the refractive-index profile and the field-distribution function are expanded in power series, and these are put into a wave equation to determine the coefficients of the series for the field function.

A. Dispersion Equation

The scalar wave equation can be written as [8]

$$\frac{1}{x} \frac{d}{dx} \left(x \frac{dR}{dx} \right) + \left(u^2 - \rho v^2 x^\alpha - \frac{m^2}{x^2} \right) R = 0 \quad (2)$$

where

$$v^2 = a^2 k^2 n_1^2 (2\Delta): \text{normalized frequency} \quad (3)$$

$$u^2 = a^2 (n_1^2 k^2 - \beta^2) \quad (4)$$

$$x = r/a \quad (5)$$

$R(x)$ is the function representing the field distribution, m is the rotational mode number, and k and β denote the propagation constants in free space and in the fiber along its axis, respectively.

We express the solution in the core as [2]

$$R_{\text{core}}(x) = Ax^m \sum_{n=0}^{\infty} a_n x^n, \quad x \leq 1 \quad (6)$$

and that in the cladding as

$$R_{\text{cladding}}(x) = BK_m(wx), \quad x > 1 \quad (7)$$

where A and B are constants, K_m is the m th order modified Bessel function of the second kind, and

$$w^2 = v^2 - u^2 = a^2 (\beta^2 - k^2 n_2^2). \quad (8)$$

The coefficients a_n in (6) are determined by the following recurrence formula [7]:

$$a_n = \begin{cases} -\frac{1}{n(n+2m)} u^2 a_{n-2}, & 2 \leq n < \alpha + 2 \\ -\frac{1}{n(n+2m)} (u^2 a_{n-2} - \rho v^2 a_{n-\alpha-2}), & \alpha + 2 \leq n \end{cases} \quad (9a)$$

$$a_0 = 1 \quad (10)$$

$$a_1 = 0. \quad (11)$$

From the continuity of R and dR/dx at $x = 1$, we obtain the dispersion equation as [7]

$$\frac{\sum_{n=0}^{\infty} n a_n}{\sum_{n=0}^{\infty} a_n} + 2m + \frac{w K_{m-1}(w)}{K_m(w)} = 0. \quad (12)$$

B. Cutoff Conditions

At cutoff frequencies for each mode

$$u = v \quad (13)$$

$$w = 0. \quad (14)$$

Hence (12) becomes

$$\frac{\sum_{n=0}^{\infty} n b_n}{\sum_{n=0}^{\infty} b_n} + 2m = 0 \quad (15)$$

where

$$b_0 = 1 \quad (16)$$

$$b_1 = 0 \quad (17)$$

$$b_n = \begin{cases} -\frac{1}{n(n+2m)} v^2 b_{n-2}, & 2 \leq n < \alpha + 2 \\ -\frac{1}{n(n+2m)} v^2 (b_{n-2} - \rho b_{n-\alpha-2}), & \alpha + 2 \leq n. \end{cases} \quad (18a)$$

$$. \quad (18b)$$

The normalized cutoff frequencies v_c can be determined by solving (15)–(18). The l th smallest solution of v gives the v_c for LP_{ml} mode.

C. Delay Time

When the dispersion relation ($k - \beta$ relation) is obtained in a form of $f(k, \beta) = 0$, the delay time per unit distance is given as

$$t = -\frac{1}{c} \frac{\partial f / \partial k}{\partial f / \partial \beta} \quad (19)$$

where c is the velocity of light. Using (12), we obtain

$$t = -\frac{1}{c} \frac{\frac{\partial}{\partial k} \left[\sum_{n=0}^{\infty} n a_n / \sum_{n=0}^{\infty} a_n + w K_{m-1}(w) / K_m(w) \right]}{\frac{\partial}{\partial \beta} \left[\sum_{n=0}^{\infty} n a_n / \sum_{n=0}^{\infty} a_n + w K_{m-1}(w) / K_m(w) \right]}. \quad (20)$$

However, computation of the delay time using this formula takes a long computer time to assure accuracy. A better expression is obtained from the variational expression of β [3] as

$$t = \frac{\int_0^t \frac{d(k^2 n^2(x))}{dk} R^2(x) x dx}{c \beta \int_0^{\infty} R^2(x) x dx}. \quad (21)$$

Putting (6) and (7) into (21), we obtain the delay time as

$$t = \frac{\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_i a_j / i + j + \alpha + 2m + 2 + \left(\sum_{i=0}^{\infty} a_i \right)^2 \eta_m}{\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_i a_j / i + j + 2m + 2 + \left(\sum_{i=0}^{\infty} a_i \right)^2 \eta_m} \quad (22)$$

where

$$\eta_m = \frac{K_{m-1}(w) K_{m+1}(w)}{K_m^2(w)} - 1. \quad (23)$$

IV. FINITE ELEMENT METHOD (FEM)

In this method (hereafter FEM), the wave equation is translated into a corresponding variational problem, which is then solved by the FEM approach to obtain the proper equation. The formulation was first described in [4] for both the vectorial and scalar wave analyses, and later in [9] in a much simpler form applicable only to scalar wave analysis.

The process of the computation using the FEM is omitted in this paper because it is essentially identical to one described in [9].

V. RESULTS OF NUMERICAL ANALYSES

A. Normalized Cutoff Frequencies for Uniform-Core Fibers

First, to estimate the accuracy of the PSEM and FEM independently, the normalized cutoff frequencies of LP_{1l}

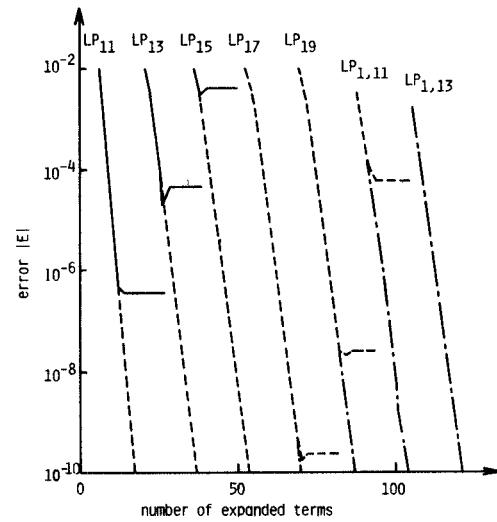


Fig. 1. Error of cutoff frequencies for uniform-core fibers computed by the PSEM, as functions of the number of terms N . Solid curves, broken curves, and dash-dotted curves show the errors for single, double, and quadruple precision computations, respectively.

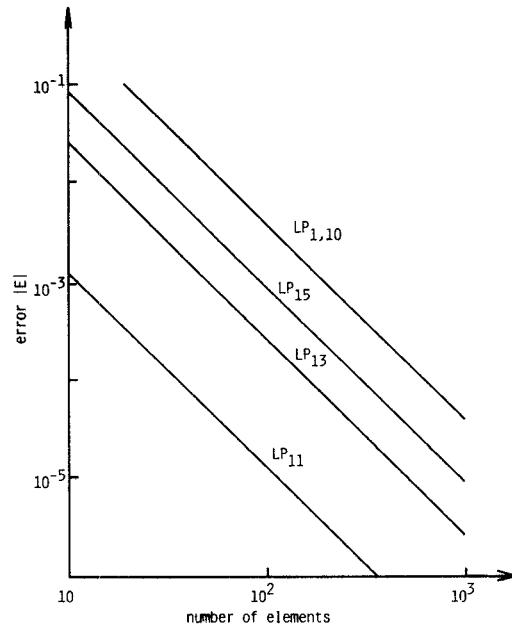


Fig. 2. Error of cutoff frequencies for uniform-core fibers computed by the FEM, as functions of the number of elements M .

modes in a uniform-core fiber calculated by using each method are compared with exact values. For a uniform core fiber, the exact values are given analytically as l th roots of $J_l(x) = 0$, where $J_l(x)$ denotes the first order Bessel function of the first kind.

Fig. 1 shows the error defined as

$$E = \frac{v_{c, \text{computed}} - v_{c, \text{exact}}}{v_{c, \text{exact}}} \quad (24)$$

obtained with the PSEM, as functions of the number of the expansion terms N . Fig. 2 shows the error E of the FEM as functions of the number of elements M in the finite-element analysis.

These figures suggest that the PSEM is more accurate than the FEM, provided that v is relatively small and/or

TABLE I
NORMALIZED CUTOFF FREQUENCIES OF LP_{ml} MODES FOR α -POWER PROFILES ($\rho=1$) COMPUTED BY USING THE PSEM (REPRODUCED DIRECTLY FROM COMPUTER OUTPUT. MODE NUMBERS m, l ARE TYPED AS M, L)

ALPHA = 1						ALPHA = 4					
	M = 0	M = 1	M = 2	M = 3	M = 4		M = 0	M = 1	M = 2	M = 3	M = 4
L = 1	0.000000	4.381552	7.218553	9.918859	12.569812	L = 1	0.000000	2.999553	4.549936	6.580971	8.263079
L = 2	5.946512	8.953073	11.714540	14.419490	17.073726	L = 2	4.555590	6.693977	8.440458	10.231664	11.951132
L = 3	10.773218	13.575572	16.301933	18.981256	21.632252	L = 3	8.226613	10.202567	12.589519	15.866820	15.590939
L = 4	15.535689	18.247972	20.930571	23.587745	26.226232	L = 4	11.855771	13.795271	15.050224	17.449592	19.210069
L = 5	20.277313	22.934087	25.583111	28.219431	30.844925	L = 5	15.470632	17.388235	19.204901	21.047174	22.818915
L = 6	25.009182	27.627715	30.20148	32.688007	35.479889	L = 6	19.078758	20.981466	22.331718	24.642327	26.422112
L = 7	29.735625	32.325942	34.926809	37.528495	40.128122	L = 7	22.683119	24.574905	26.422849	28.236268	30.021978
L = 8	34.458707	37.027206	39.610216	42.197722	44.786075	L = 8	26.295139	28.168503	30.014287	31.829588	33.619775
L = 9	39.170548	41.730590	44.298550	46.873558	49.451613	L = 9	29.885592	31.762224	33.660637	35.422593	37.216237
L = 10	43.896814	46.435519	48.990603	51.554558	54.123189	L = 10	33.464541	35.356041	37.198055	39.015451	40.811810
	M = 5	M = 6	M = 7	M = 8	M = 9		M = 5	M = 6	M = 7	M = 8	M = 9
L = 1	15.197459	17.812375	20.421423	23.025945	25.628333	L = 1	9.919787	11.561650	13.144344	14.829444	16.443449
L = 2	19.709153	22.330576	24.943275	27.550414	30.153594	L = 2	13.640749	15.310610	16.906549	18.612914	20.251867
L = 3	24.264756	26.885341	29.497118	32.103625	34.706342	L = 3	17.305095	19.377576	20.474652	22.339436	23.994945
L = 4	28.851316	31.466823	34.075688	36.679279	39.279614	L = 4	20.942068	22.652626	24.346550	26.027414	27.679751
L = 5	33.466362	36.069329	38.673037	41.272834	43.869767	L = 5	24.564160	26.288640	27.996502	29.690900	31.374249
L = 6	38.086220	40.687894	43.285842	45.889009	48.473796	L = 6	28.177443	29.912895	31.632152	33.337945	35.032461
L = 7	42.724979	45.319145	47.910979	50.500916	53.083865	L = 7	31.785053	33.529395	35.258060	36.973481	38.677623
L = 8	47.373585	49.960595	52.546222	55.130863	57.714716	L = 8	35.389006	37.140562	38.877075	40.606686	42.313156
L = 9	52.030832	54.610369	57.189855	59.769165	62.348452	L = 9	38.985421	40.747936	42.491064	44.221694	45.941406
L = 10	56.694386	59.267010	61.840825	64.411383	67.028140	L = 10	42.595040	44.352537	45.101294	47.837985	49.564030

(a)						(c)					
	M = 0	M = 1	M = 2	M = 3	M = 4		M = 0	M = 1	M = 2	M = 3	M = 4
L = 1	0.000000	3.518050	5.7743923	7.847594	9.904203	L = 1	0.000000	2.649259	4.424970	5.713952	7.130066
L = 2	5.067506	7.451446	9.645060	11.759842	13.833188	L = 2	4.174340	6.026765	7.675864	9.228729	10.724173
L = 3	9.157606	11.423744	13.590328	15.702133	17.780248	L = 3	7.591270	9.378183	11.042524	12.632376	14.171512
L = 4	13.197225	15.408617	17.554802	19.660386	21.739339	L = 4	10.958339	12.718355	14.390161	16.001372	17.568038
L = 5	17.222229	19.397792	21.529546	23.629565	25.706695	L = 5	14.390667	16.054040	17.730210	19.355070	20.940528
L = 6	21.235517	23.390452	25.510500	27.694910	29.679599	L = 6	17.655380	19.388406	21.066491	22.700703	24.299729
L = 7	25.246531	27.384901	29.495527	31.584678	33.657593	L = 7	20.993947	22.721218	24.406646	26.041594	27.650827
L = 8	29.254906	31.380530	33.483388	35.568216	37.638559	L = 8	24.331596	26.053267	27.733492	29.379478	30.966368
L = 9	33.261524	35.376982	37.473309	39.554997	41.622126	L = 9	27.667573	29.384796	31.065481	32.715347	34.338818
L = 10	37.266908	39.374036	41.464782	43.541950	45.607769	L = 10	31.002366	32.715950	34.366802	36.649860	37.678405

(b)						(d)					
	M = 0	M = 1	M = 2	M = 3	M = 4		M = 0	M = 1	M = 2	M = 3	M = 4
L = 1	11.937778	13.958687	15.972134	17.980980	19.986899	L = 1	8.515250	9.880903	11.233353	12.576461	13.912734
L = 2	15.882132	17.915717	19.939211	21.955873	23.967812	L = 2	12.181310	13.611131	15.020595	16.414397	17.795860
L = 3	19.836252	21.877116	23.907310	25.929824	27.946725	L = 3	15.673698	17.147726	18.599600	20.033620	21.452985
L = 4	23.798431	25.843439	27.878016	29.904747	31.925509	L = 4	19.100437	20.605606	22.086605	23.553210	25.002323
L = 5	27.766848	29.814148	31.851566	33.881031	35.905008	L = 5	22.494501	24.022693	25.529368	27.017809	28.490604
L = 6	31.740088	33.788551	35.827781	37.859640	39.885574	L = 6	25.869832	27.415705	28.940963	30.448461	31.940500
L = 7	35.717008	37.766029	39.806373	41.839717	43.867326	L = 7	29.233345	30.793270	32.333486	33.856557	35.364526
L = 8	39.67134	41.746066	43.787058	45.821404	47.850265	L = 8	32.569152	34.160326	35.712832	37.248857	38.702223
L = 9	43.675950	45.728244	47.769510	49.804555	51.834300	L = 9	35.939320	37.519190	39.062683	40.629648	42.162433
L = 10	47.664039	49.712229	51.753553	53.789020	55.819470	L = 10	39.265653	40.873995	42.445467	44.001788	45.544419

the numerical error is reduced by increasing N and the significant digit in the computation. However, generally the PSEM is more time consuming. As seen in Fig. 1, to achieve satisfactory accuracy for higher modes ($l > 9$), the PSEM requires the "quadruple precision" computation which means to deal with about 33 significant digits. In the FEM, when $M < 1000$, double precision computation (17 significant digits) is usually enough.

In the PSEM the computing time is proportional to N . In the FEM it is approximately proportional to M . (When we compute the determinant of an $M \times M$ matrix, the time required is usually proportional to M^2 . However, in the present case most of the off-diagonal elements are zero.)

B. Normalized Cutoff Frequencies for α -Power Profiles

The normalized cutoff frequencies of LP_{ml} modes for α -power profiles ($\alpha = 1, 2, 4$, and 10 , $\rho = 1$) computed by PSEM are shown in Table I. It has been confirmed that the relative difference between the v_c values obtained by the FEM and PSEM ($(v_{c\text{FEM}} - v_{c\text{PSEM}})/v_{c\text{PSEM}}$) is below 0.005 percent (5×10^{-5}) except for only two cases ($LP_{8,10}$ and $LP_{9,10}$ modes, both for $\alpha = 1$), and below 0.06 percent over the entire table.

C. Dispersion and Delay-Time Characteristics

Figs. 3-8 show the dispersion and delay time characteristics (curve-plotter output) of LP_{ml} modes for six α -power

profiles: $(\alpha, \rho) = (1, 1), (2, 1), (4, 1), (10, 1), (2, 1.5)$, and $(2, 2)$. The upper and lower figures for each case show the dispersion and delay-time characteristics, respectively. The abscissa gives the normalized frequency v . The ordinates of the upper and lower figures give a conventionally used parameter representing β

$$X = (k^2 n_1^2 - \beta^2) / (k^2 n_1^2 - k^2 n_2^2) \quad (25)$$

and the normalized delay time

$$T = \frac{ct}{N_1} - 1 \quad (26)$$

where c denotes the light velocity, t the delay time per unit distance (19), and N_1 is the group index of the material at the center of the core (it is assumed to be equal to n_1 in the present analysis).

The FEM ($M = 100$) has been used to obtain these graphs. However, computations have also been performed by using the PSEM. It has been confirmed that the relative error in the horizontal direction (i.e., $(v_{\text{FEM}} - v_{\text{PSEM}})/v_{\text{PSEM}}$ for prescribed X or T) is less than 10^{-2} over the entire graphs, and much lower than 10^{-2} at most parts.

Incidentally, comparison of Figs. 3-6 suggests the well-known superiority of the quadratic profile ($\alpha = 2$) in reducing the intermodal delay difference; the best "bunching" of $T-v$ curves is found in Fig. 4. Comparison of

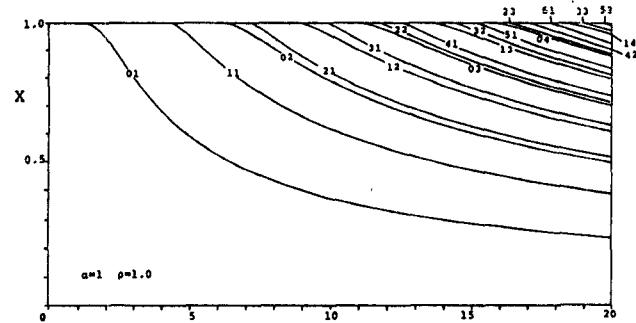
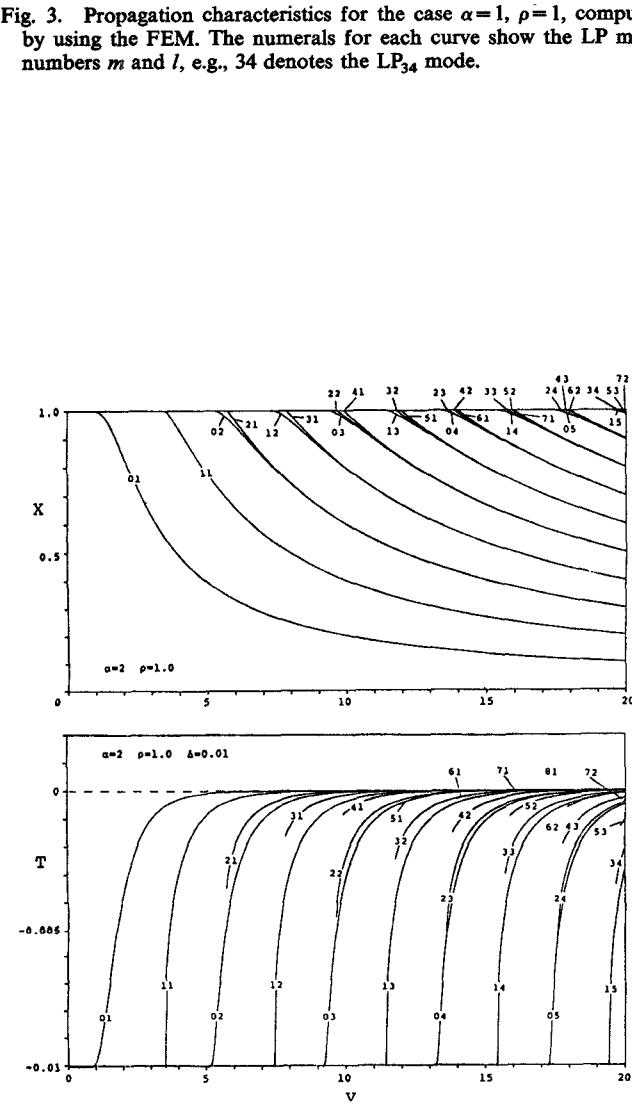


Fig. 4. Propagation characteristics for the case $\alpha=2$, $\rho=1$, computed by using the FEM.

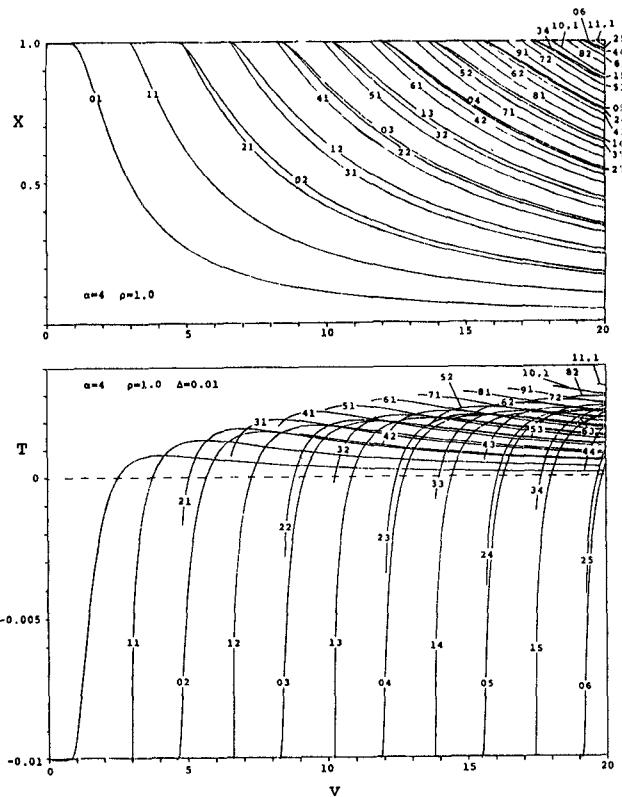


Fig. 5. Propagation characteristics for the case $\alpha=4$, $\rho=1$, computed by using the FEM.

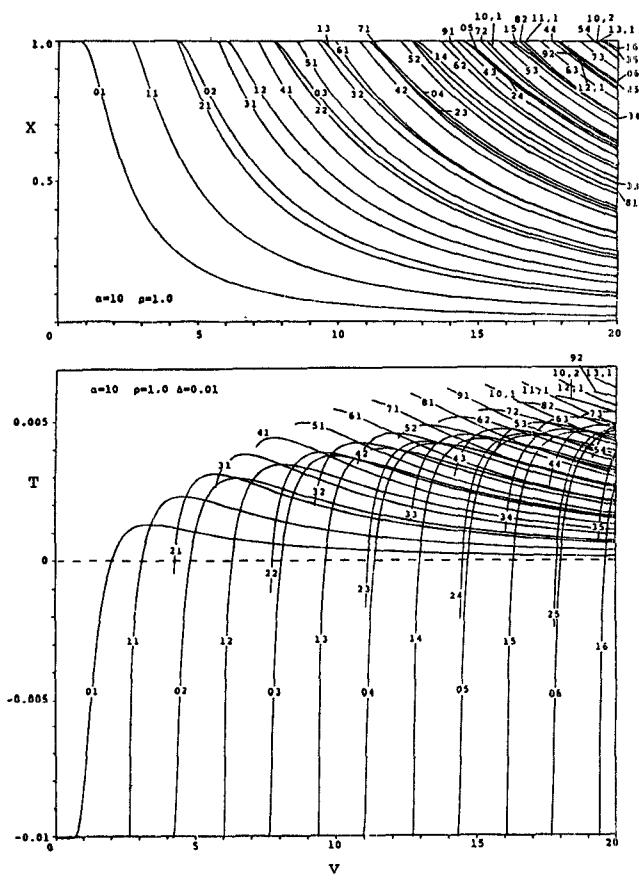


Fig. 6. Propagation characteristics for the case $\alpha = 10$, $\rho = 1$, computed by using the FEM.

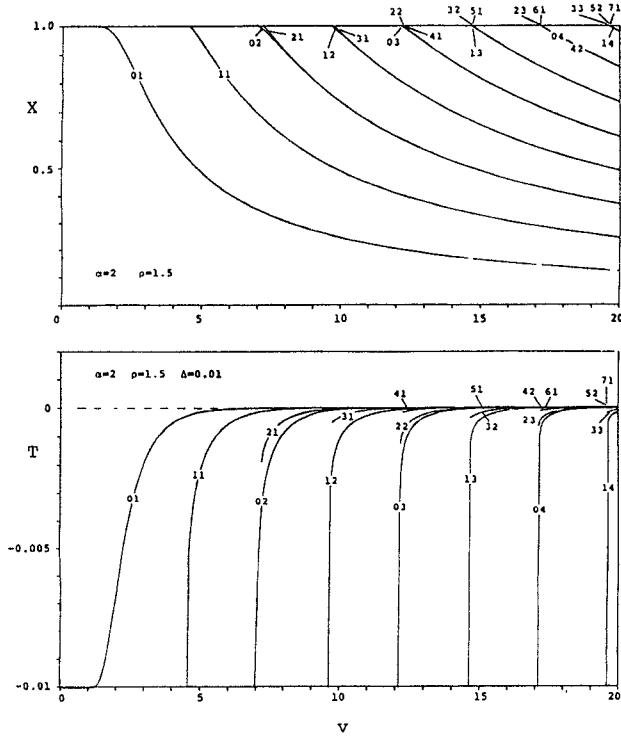


Fig. 7. Propagation characteristics for the case $\alpha=2$, $\rho=1.5$ (a quadratic profile with valley) computed by using the FEM.

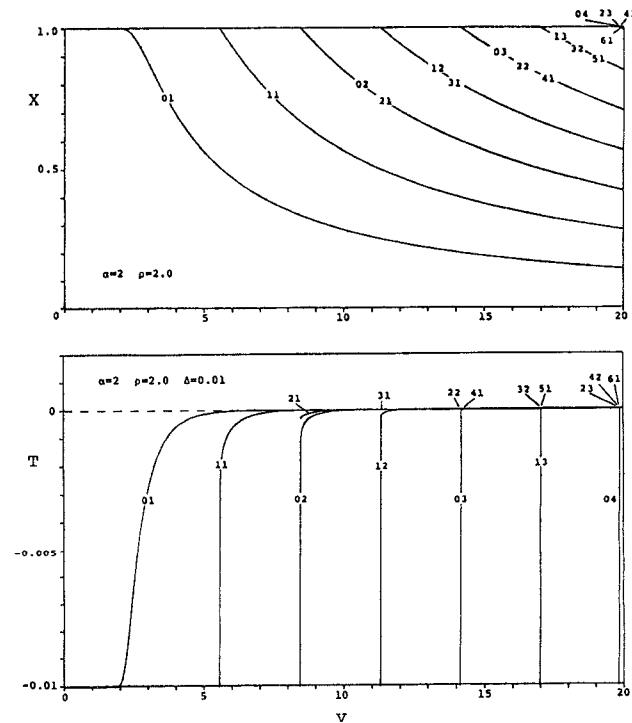


Fig. 8. Propagation characteristics for the case $\alpha=2$, $\rho=2$ (a quadratic profile with valley) computed by using the FEM.

Figs. 4, 7, and 8 suggests that the delay difference can further be reduced dramatically by making an index valley at the core-cladding boundary ($\rho=1.5$ or $\rho=2$), as proposed by Okamoto and Okoshi [10]¹, [12].

VI. CONCLUSION

High-accuracy data of normalized cutoff frequencies, propagation constants and delay time of LP_{ml} modes for α -power graded-core fibers have been presented. Computations have been performed by two entirely different methods, and the results are compared to assure accuracy. The presented data will be useful for estimating the errors of other methods of analysis.

ACKNOWLEDGMENT

The authors wish to thank Dr. K. Okamoto, Ibaraki Electrical Communication Lab., for valuable suggestions on the FEM.

REFERENCES

- [1] D. Glogé and E. A. J. Marcatili, "Multimode theory of graded-core fibers," *Bell Syst. Tech. J.*, vol. 52, no. 9, pp. 1563-1578, Nov. 1973.
- [2] W. A. Gambling, D. N. Payne, and H. Matsumura, "Cutoff frequency in radially inhomogeneous single-mode fiber," *Electron. Lett.*, vol. 13, no. 5, pp. 139-140, Mar. 1977.
- [3] T. Okoshi and K. Okamoto, "Analysis of wave propagation in optical fibers using a variational method," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-22, pp. 938-945, Nov. 1974.
- [4] K. Okamoto and T. Okoshi, "Vectorial wave analysis of inhomogeneous optical fibers using finite element method," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-26, pp. 109-114, Feb. 1978.
- [5] E. Bianciardi and V. Rizzoli, "Propagation in graded-core fibers: a unified numerical description," *Opt. Quantum Electron.*, vol. 9, pp. 121-133, 1977.
- [6] D. Glogé, "Weakly guiding fibers," *Appl. Opt.*, vol. 10, no. 10, pp. 2252-2258, Oct. 1971.
- [7] J. D. Love, "Power series solutions of the scalar wave equation for cladded, power-law profiles of arbitrary exponent," *Opt. Quantum Electron.*, vol. 11m pp. 464-466, 1979.
- [8] S. Kawakami and J. Nishizawa, "An optical waveguide with the optimum distribution of the refractive index with reference to waveguide distortion," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-16, pp. 814-818, equation (34), Oct. 1968.
- [9] K. Okamoto, "Comparison of calculated and measured impulse response of optical fibers," *Appl. Opt.*, vol. 18, no. 13, pp. 2199-2206, July 1979.
- [10] K. Okamoto and T. Okoshi, "Analysis of wave propagation in optical fibers having core with α -power refractive index profile and uniform cladding," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-24, pp. 416-421, July 1976.
- [11] K. Okamoto, T. Okoshi, and K. Hotate, "A closed form approximate dispersion formula for α -power graded-core fibers," *Fiber and Integrated Optics*, vol. 2, no. 2, pp. 127-143, 1979.
- [12] K. Okamoto and T. Okoshi, "Computer-aided synthesis of the optimum refractive-index profile for a multimode fiber," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-25, pp. 213-231, Mar. 1977.

¹The dispersion curves shown in [10] are a little different from Figs. 3-8 of the present paper. This is because the closed-form dispersion formula, which was used to compute the dispersion curves, is an approximate one. This fact was overlooked in [10]. The same formula is newly derived in a correct manner but as an approximation in [11].